Abstract

Using more than 100 galaxies in the MUSE Ultra Deep Field with spectroscopy from the Hubble Space Telescope’s (HST) Wide Field Camera 3 and the Very Large Telescope’s Multi Unit Spectroscopic Explorer, we extend the gas-phase mass–metallicity relation (MZR) at z ≈ 1–2 down to stellar masses of M ⋆ ≈ 107.5 M ⊙. The sample reaches 6 times lower in stellar mass and star formation rate (SFR) than previous HST studies at these redshifts, and we find that galaxy metallicities decrease to log(O/H) + 12 ≈ 7.8 ± 0.1 (15% solar) at log(M ⋆/M ⊙) ≈ 7.5, without evidence of a turnover in the shape of the MZR at low masses. We validate our strong-line metallicities using the direct method for sources with [O iii] λ4363 and [O iii] λ1666 detections, and find excellent agreement between the techniques. The [O iii] λ1666-based metallicities double existing measurements with a signal-to-noise ratio ≥ 5 for unlensed sources at z > 1, validating the strong-line calibrations up to z ∼ 2.5. We confirm that the MZR resides ∼0.3 dex lower in metallicity than local galaxies and is consistent with the fundamental metallicity relation if the low-mass slope varies with SFR. At lower redshifts (z ∼ 0.5) our sample reaches ∼0.5 dex lower in SFR than current calibrations and we find enhanced metallicities that are consistent with extrapolating the MZR to lower SFRs. Finally, we detect only an ∼0.1 dex difference in the metallicities of galaxies in groups versus isolated environments. These results are based on robust calibrations and reach the lowest masses and SFRs that are accessible with HST, providing a critical foundation for studies with the Webb and Roman Space Telescopes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.