Abstract

Already in an early disease stage, patients with chronic obstructive pulmonary disease (COPD) are confronted with impaired skeletal muscle function and physical performance due to a loss of oxidative type I muscle fibers and oxidative capacity (i.e. oxidative phenotype; Oxphen). Physical activity is a well-known stimulus of muscle Oxphen and crucial for its maintenance. We hypothesized that a blunted response of Oxphen genes to an acute bout of exercise could contribute to decreased Oxphen in COPD. For this, 28 patients with less advanced COPD (age 65±7 yrs, FEV1 59±16% predicted) and 15 age- and gender-matched healthy controls performed an incremental cycle ergometry test. The Oxphen response to exercise was determined by the measurement of gene expression levels of Oxphen markers in pre and 4h-post exercise quadriceps biopsies. Because exercise-induced hypoxia and oxidative stress may interfere with Oxphen response, oxygen saturation and oxidative stress markers were assessed as well. Regardless of oxygen desaturation and absolute exercise intensities, the Oxphen regulatory response to exercise was comparable between COPD patients and controls with no evidence of increased oxidative stress. In conclusion, the muscle Oxphen regulatory response to acute exercise is not blunted in less advanced COPD, regardless of exercise-induced hypoxia. Hence, this study provides further rationale for incorporation of exercise training as integrated part of disease management to prevent or slow down loss of muscle Oxphen and related functional impairment in COPD.

Highlights

  • Loss of skeletal muscle oxidative phenotype (Oxphen) is prevalent in chronic obstructive pulmonary disease (COPD) [13]

  • Loss of muscle Oxphen is related to functional impairments, such as a reduction in muscle endurance [4], whole body exercise capacity, and mechanical efficiency [5], and it has been proposed as a driver of cardiovascular and metabolic risk [6] and cachexia [7]

  • Loss of muscle Oxphen is most prominent in severe COPD, but we recently showed that the process is already ongoing in patients with less advanced COPD [8]

Read more

Summary

Introduction

Loss of skeletal muscle oxidative phenotype (Oxphen) is prevalent in chronic obstructive pulmonary disease (COPD) [13] It includes a proportional shift from slow-oxidative type I muscle fibers towards the fast-glycolytic type II fibers, associated with a reduced capacity of oxidative metabolism and in advanced disease mitochondrial dysfunction [4]. Loss of muscle Oxphen is most prominent in severe COPD, but we recently showed that the process is already ongoing in patients with less advanced COPD [8]. We hypothesized that the response of Oxphen regulation to acute bouts of exercise is blunted in COPD, which could contribute to a loss of muscle Oxphen irrespective of physical activity level. To test this hypothesis we compared Oxphen markers and their regulators in muscle biopsies obtained before and after an acute bout of exercise, between less advanced COPD patients and healthy controls who were matched for age and body mass index (BMI)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call