Abstract
We formulate and investigate the Multi-Weighted Steiner Problem (MWS), a generalization of the Steiner problem in graphs, involving more than one weight function. As a special case, it contains the hierarchical network design problem. With the notion of "bottleneck length/distance", a min-max measure, we analyze the interaction between differently weighted edges in a solution. Combining the results with known methods for the Steiner problem in graphs and the hierarchical network design problem, two heuristics for the MWS are developed, one based on weight modifications and the other on exchanging edges. Both are of time complexityO(kv2), withv the number of nodes andk the number of special nodes in the graph. The first is also suited for thedirected MWS; the second is expected to perform better on the undirected version. Before actually solving the Steiner problem in graphs and the hierarchical network design problem, preprocessing techniques exploiting tests to reduce the problem graphs have proven to be valuable. We adapt three prominent tests for use in the MWS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.