Abstract
Using positive semidefinite supOU (superposition of Ornstein–Uhlenbeck type) processes to describe the volatility, we introduce a multivariate stochastic volatility model for financial data which is capable of modeling long range dependence effects. The finiteness of moments and the second‐order structure of the volatility, the log‐ returns, as well as their “squares” are discussed in detail. Moreover, we give several examples in which long memory effects occur and study how the model as well as the simple Ornstein–Uhlenbeck type stochastic volatility model behave under linear transformations. In particular, the models are shown to be preserved under invertible linear transformations. Finally, we discuss how (sup)OU stochastic volatility models can be combined with a factor modeling approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.