Abstract

This article presents the theory behind a model for a two-stage analog network for edge detection and image reconstruction to be implemented in analog VLSI. Edges are detected in the first stage using the multiscale veto rule, which states that an edge exists only if it can pass a threshold test for each of a set of smoothing filters of decreasing bandwidth. The image is reconstructed in the second stage from the brightness values at the pixels between which edges occur. The effect of the multiscale veto rule is that noise is removed with the efficiency of the narrowest-band smoothing filter, while edges are well-localized to feature boundaries without having to identify maxima in the magnitude of the gradient. Unlike previous analog models for edge detection and reconstruction, there are no problems of local minima, and for any given set of parameters, there is a unique solution. The reconstructed images appear natural and are very similar visually to the originals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.