Abstract

In contrast to homogeneous materials, the mechanical properties of fibrous substrates depend on the probing lengthscale. This suggests that cells feel very different mechanical cues than expected from the macroscale characterisation of the substrate materials. By means of multiscale computational analyses we study here the mechanical environment of cells adhering to typical electrospun networks used in biomedical applications, with comparable macroscopic stiffness but different fibre diameters. The stiffness evaluated at the level of focal adhesions varies significantly, and the overall magnitude is strongly affected by the fibre diameter. The microscopic stiffness evaluated at cell scale depends substantially on the network topology and is about one order of magnitude lower than the macroscopic stiffness of the substrate, and two to three orders of magnitude below the fibres’ elastic modulus. Moreover, the translation of stiffness over the scales is modulated by global deformations of the scaffold. In particular, uniaxial or biaxial stretching of the substrate induces nonlinear microscopic stiffening. Finally, although electrospun networks allow long-range transmission of cell-induced deformations, the comparison between the range of forces measured in cell traction force microscopy and those required to markedly deform typical electrospun networks reveals an order of magnitude difference, suggesting that these scaffolds provide a rather rigid environment for cells. All these results underline that the achievement of mechanical biocompatibility at all relevant lengthscales, and over the whole range of physiological loading states is extremely challenging. At the same time, the study shows that the diameter, length and curvature of fibre segments might be tunable towards achieving this goal. Statement of SignificanceElectrospun fabrics have growing use as substrates and scaffolds in tissue engineering and other biomedical applications. Based on multiscale computational analyses, this study shows that substrates of comparable macroscopic stiffness can provide tremendously different mechanical micro-environments, and that cells adhering to fibrous substrates may thus experience by orders of magnitude different mechanical cues than it would be expected from macroscale material characterisation. The simulations further reveal that the transfer of stiffness over the length scales changes with macroscopic deformation, and identify some key parameters that govern the transfer ratio. We believe that such refined understanding of the multiscale aspects of mechanical biocompatibility is key to the development of successful scaffold materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call