Abstract

Many methodologies have been proposed to build reliable and computationally fast coarse-grained potentials. Typically, these force fields rely on the assumption that the relevant properties of the system under examination can be reproduced using a pairwise decomposition of the effective coarse-grained forces. In this work it is shown that an extension of the multiscale coarse-graining technique can be employed to parameterize a certain class of two-body and three-body force fields from atomistic configurations. The use of explicit three-body potentials greatly improves the results over the more commonly used two-body approximation. The method proposed here is applied to develop accurate one-site coarse-grained water models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.