Abstract
We present the computation of the eight-particle three-loop amplitude beyond leading logarithmic accuracy in the multi-Regge limit of planar mathcal{N} = 4 Super Yang-Mills theory. Starting from the all-loop dispersion integral form of the amplitude, we consider the eight-particle case and by analyzing said dispersion integral we associate it to a well-defined Fourier-Mellin transform. By using the properties of the Fourier-Mellin representation and its convolution product structure, we compute the three-loop eight-particle MHV amplitude at next-to-leading logarithmic accuracy. From this MHV result, we obtain the three-loop eight particle amplitude in multi-Regge kinematics for all helicity configurations, including next-to-next-to-MHV. Finally, we find that the result is described by combinations of single-valued multiple polylogarithms of uniform weight, the leading singularity structure of which corresponds to the classification shown at leading logarithmic accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.