Abstract
Abstract. Newton's method is one of the numerical methods used in finding polynomial roots. This method will be very effective to use, if the initial estimate of the roots for the Newton iteration function satisfies sufficient Newtonian convergence, [11]. In this article we will analyze the efficacy of this method by looking at the relationship between the fixed point method and Newton's iteration function. When the iteration of the function converges to the root, the velocity of convergence can also be determined. In terms of the speed of convergence, it turns out to be very dependent on the multiplicity of Newton's method itself.
 
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.