Abstract
Let G a simple group of type 2 B 2(q) or 2 G 2(q), where q is an odd power of 2 or 3, respectively. The main goal of this paper is to determine the multiplicity free permutation representations of G and A ≤ Aut(G) where A is a subgroup containing a copy of G. Let B be a Borel subgroup of G. If G = 2 B 2(q) we show that there is only one non-trivial multiplicity free permutation representation, namely the representation of G associated to the action on G/B. If G = 2 G 2(q) we show that there are exactly two such non-trivial representations, namely the representations of G associated to the action on G/B and the action on G/M, where M = UC with U the maximal unipotent subgroup of B and C the unique subgroup of index 2 in the maximal split torus of B. The multiplicity free permutation representations of A correspond to the actions on A/H where H is isomorphic to a subgroup containing B if G = 2 B 2(q), and containing M if G = 2 G 2(q). The problem of determining the multiplicity free representations of the finite simple groups is important, for example, in the classification of distance-transitive graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.