Abstract

We propose a photonic quasi-crystal fiber which has five ring-shaped cores in the cross section. It realizes the multiplexing of 6 vortex modes. The fiber is based on SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> and has an octuple photonic quasi-crystal structure. It achieves four independent dual-core coupling pairs with the optimization of geometric parameters. By adjusting the thickness of five ring-shaped cores, the fundamental mode (HE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">11</sub> ) in the small side ring-shaped fiber cores couple to different higher order vector modes (TE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">01</sub> , HE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">21</sub> , TM <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">01</sub> , HE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">31</sub> ) in the large center ring-shaped fiber core, which makes the light field transfer from small side cores to large center core and realizes the multiplexing of 6 vortex modes (TE <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">01</sub> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\text{OAM}_{ \pm 1,1}^ \pm $</tex-math></inline-formula> , TM <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">01</sub> , <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\text{OAM}_{ \pm 2,1}^ \pm $</tex-math></inline-formula> ). The transmission characteristics are analyzed with supermode theory. The <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\Delta {n}_{\text{eff}}$</tex-math></inline-formula> of adjacent vector modes is larger than <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${10}^{ - 4}$</tex-math></inline-formula> due to the thin center ring core. The coupling length ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${L}_c$</tex-math></inline-formula> ) keeps in the order of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">${10}^{ - 2}$</tex-math></inline-formula> m between 1500--1600 nm and the coupling efficiency is larger than 90% in 1550 nm for four dual-core coupling pairs. We believe this design will have great potential in the field of all-fiber vortex mode division multiplexing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call