Abstract

Lipids are essential components of a living organism as energy source but also as constituent of the membrane lipid bilayer. In addition fatty acid (FA) derivatives interact with many signaling pathways. FAs have amphipathic properties and therefore require being associated to protein for both transport and intracellular trafficking. Here we will focus on several FA handling proteins, among which the fatty acid translocase/CD36 (FAT/CD36), members of fatty acid transport proteins (FATPs), and lipid chaperones fatty acid-binding proteins (FABPs). A decade of extensive studies has helped decipher the mechanism of action of these proteins in peripheral tissue with high lipid metabolism. However, considerably less information is available regarding their role in the brain, despite the high lipid content of this tissue. This review will primarily focus on the recent studies that have highlighted the crucial role of lipid handling proteins in brain FA transport, neuronal differentiation and development, cognitive processes and brain diseases. Finally a special focus will be made on the recent studies that have revealed the role of FAT/CD36 in brain lipid sensing and nervous control of energy balance.

Highlights

  • The multiple roles of fatty acid handling proteins in brainWe will focus on several Fatty acids (FAs) handling proteins, among which the fatty acid translocase/CD36 (FAT/CD36), members of fatty acid transport proteins (FATPs), and lipid chaperones fatty acid-binding proteins (FABPs)

  • All mammalian cells require energy and nutrient supplies for their proper functioning

  • Some FA handling proteins such as the fatty acid translocase FAT/CD36, fatty acid transport proteins (FATPs), and lipid chaperones fatty acid-binding proteins (FABPs) have been extensively studied in peripheral tissues but considerably less information is available regarding their role in the brain

Read more

Summary

The multiple roles of fatty acid handling proteins in brain

We will focus on several FA handling proteins, among which the fatty acid translocase/CD36 (FAT/CD36), members of fatty acid transport proteins (FATPs), and lipid chaperones fatty acid-binding proteins (FABPs). A decade of extensive studies has helped decipher the mechanism of action of these proteins in peripheral tissue with high lipid metabolism. Considerably less information is available regarding their role in the brain, despite the high lipid content of this tissue. This review will primarily focus on the recent studies that have highlighted the crucial role of lipid handling proteins in brain FA transport, neuronal differentiation and development, cognitive processes and brain diseases. A special focus will be made on the recent studies that have revealed the role of FAT/CD36 in brain lipid sensing and nervous control of energy balance

INTRODUCTION
Findings
Lipid handling proteins in brain

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.