Abstract

Most of existing multi-target tracking (MTT) algorithms, which are rooted in random finite set theory, generally rely on two hypotheses, i.e., the single dynamic model hypothesis and the hidden Markov chain (HMC) hypothesis, and the HMC hypothesis requires the target state to conform to a Markov process and the detection process to be independent. Unfortunately, these hypotheses may not always hold at the same time in many practical situations. Therefore, it is important to study the MTT algorithms in such scenarios when the HMC hypothesis and the single dynamic model hypothesis fail simultaneously. As a result, this paper presents a multiple model MTT algorithm, which is designed to tackle the MTT problem effectively in scenarios where both hypotheses are invalid. Firstly, when the HMC hypothesis is not satisfied, an MTT algorithm was presented based on pairwise Markov chain (PMC) and the labeled multi-Bernoulli filter (PMC-LMB). Secondly, in case that both hypotheses are not met, a multiple model MTT algorithm was proposed by extending the previously presented PMC-LMB filter to multiple PMC model case. Finally, extensive simulation was done to demonstrate the efficiency of the presented algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.