Abstract
Although phyAphyBphyC phytochrome-null mutants in rice (Oryza sativa) have morphological changes and exhibit internode elongation, even as seedlings, it is unknown how phytochromes contribute to the control of internode elongation. A gene for 1-aminocyclopropane-1-carboxylate oxidase (ACO1), which is an ethylene biosynthesis gene contributing to internode elongation, was up-regulated in phyAphyBphyC seedlings. ACO1 expression was controlled mainly by phyA and phyB, and a histochemical analysis showed that ACO1 expression was localized to the basal parts of leaf sheaths of phyAphyBphyC seedlings, similar to mature wild-type plants at the heading stage, when internode elongation was greatly promoted. In addition, the transcription levels of several ethylene- or gibberellin (GA)-related genes were changed in phyAphyBphyC mutants, and measurement of the plant hormone levels indicated low ethylene production and bioactive GA levels in the phyAphyBphyC mutants. We demonstrate that ethylene induced internode elongation and ACO1 expression in phyAphyBphyC seedlings but not in the wild type and that the presence of bioactive GAs was necessary for these effects. These findings indicate that phytochromes contribute to multiple steps in the control of internode elongation, such as the expression of the GA biosynthesis gene OsGA3ox2, ACO1 expression, and the onset of internode elongation.
Highlights
PhyAphyBphyC phytochrome-null mutants in rice (Oryza sativa) have morphological changes and exhibit internode elongation, even as seedlings, it is unknown how phytochromes contribute to the control of internode elongation
We examined the ethylene-responsive expression of aminocyclopropane-1-carboxylate oxidase (ACO1), ACS1, and OsEIN2, whose transcription levels were significantly altered in the phyAphyBphyC mutants (Fig. 2B), to ascertain whether there were any differences in the ethylene responsiveness of gene expression between wild-type plants and the phyAphyBphyC mutants
Because phyAphyBphyC mutants show internode elongation even in the seedling stage, they are more useful for the examination of internode elongation in intact plants than mature wild-type plants at the heading stage, which may be too large to use for experiments without excision
Summary
PhyAphyBphyC phytochrome-null mutants in rice (Oryza sativa) have morphological changes and exhibit internode elongation, even as seedlings, it is unknown how phytochromes contribute to the control of internode elongation. ACO1 expression was controlled mainly by phyA and phyB, and a histochemical analysis showed that ACO1 expression was localized to the basal parts of leaf sheaths of phyAphyBphyC seedlings, similar to mature wild-type plants at the heading stage, when internode elongation was greatly promoted. We demonstrate that ethylene induced internode elongation and ACO1 expression in phyAphyBphyC seedlings but not in the wild type and that the presence of bioactive GAs was necessary for these effects. These findings indicate that phytochromes contribute to multiple steps in the control of internode elongation, such as the expression of the GA biosynthesis gene OsGA3ox, ACO1 expression, and the onset of internode elongation. It has previously been shown that the transcription levels and promoter activity of ACO1 are significantly increased in phyAphyBphyC mutants (Takano et al, 2009; Iwamoto et al, 2010)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.