Abstract

Whether traveling wave ion mobility-mass spectrometry (IM-MS), B3LYP/LanL2DZ density functional theory, and ion size scaled Lennard-Jones (LJ) collision cross sections (CCS) from the B3LYP optimized structures could be used to determine the type of Zn(II) coordination by the oligopeptide acetyl-His1 -Cys2 -Gly3 -Pro4 -Tyr5 -His6 -Cys7 (amb5 ) was investigated. The IM-MS analyses of a pH titration of molar equivalents of Zn(II):amb5 showed that both negatively and positively charged complexes formed and coordination of Zn(II) increased as the His and Cys deprotonated near their pKa values. The B3LYP method was used to generate a series of alternative coordination structures to compare with the experimental results. The method predicted that the single negatively charged complex coordinated Zn(II) in a distorted tetrahedral geometry via the 2His-2Cys substituent groups, whereas, the double negatively charged and positively charged complexes coordinated Zn(II) via His, carbonyl oxygens and the C-terminus. The CCS of the B3LYP complexes were calculated using the LJ method and compared with those measured by IM-MS for the various charge state complexes. The LJ method provided CCS that agreed with five of the alternative distorted tetrahedral and trigonal bipyramidal coordinations for the doubly charged complexes, but provided CCS that were 15 to 31 Å2 larger than those measured by IM-MS for the singly charged complexes. Collision-induced dissociation of the Zn(II) complexes and a further pH titration study of amb5B , which included amidation of the C-terminus, suggested that the 2His-2Cys coordination was more significant than coordinations that included the C-terminus. Copyright © 2016 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.