Abstract

A recent formulation of a multiphase-field model is presented. The approach is employed to numerically simulate phase transitions in multiphase systems and to describe the evolution of the microstructure during solidification processes in alloy systems. A new method for modelling solute diffusion in a binary alloy within N different phases with varying solubilities and different diffusion coefficients is integrated in the multiphase-field model. The phase-field/diffusion model derived is compared with the previous Wheeler, Boettinger and McFadden (WBM) model in a limiting case. The set of coupled evolution equations, the phase-field model equations and the concentration field equation is solved using control volume techniques on a uniform mesh. With the input of the specific phase diagram, thermophysical and materials data of the chosen real FeC alloy system, the multiphase-field method is successfully applied to compute the peritectic solidification process of steel. The numerical calculations of the peritectic reaction and transformation are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.