Abstract

E-commerce has developed rapidly, and product promotion refers to how e-commerce promotes consumers' consumption activities. The demand and computational complexity in the decision-making process are urgent problems to be solved to optimize dynamic pricing decisions of the e-commerce product lines. Therefore, a Q-learning algorithm model based on the neural network is proposed on the premise of multimodal emotion information recognition and analysis, and the dynamic pricing problem of the product line is studied. The results show that a multi-modal fusion model is established through the multi-modal fusion of speech emotion recognition and image emotion recognition to classify consumers' emotions. Then, they are used as auxiliary materials for understanding and analyzing the market demand. The long short-term memory (LSTM) classifier performs excellent image feature extraction. The accuracy rate is 3.92%-6.74% higher than that of other similar classifiers, and the accuracy rate of the image single-feature optimal model is 9.32% higher than that of the speech single-feature model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.