Abstract

The human p100 protein is a vital transcription regulator that increases gene transcription by forming a physical bridge between promoter-specific activators and the basal transcription machinery. Here we demonstrate that the tudor and SN (TSN) domain of p100 interacts with U small nuclear ribonucleoprotein (snRNP) complexes, suggesting a role for p100 in the processing of precursor messenger RNA. We determined the crystal structure of the p100 TSN domain to delineate the molecular basis of p100's proposed functions. The interdigitated structure resembles a hook, with a hinge controlling the movement and orientation of the hook. Our studies suggest that a conserved aromatic cage hooks methyl groups of snRNPs and anchors p100 to the spliceosome. These structural insights partly explain the distinct roles of p100 in transcription and splicing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.