Abstract

BackgroundGemcitabine is proven to be the first-line standard treatment of breast cancers. Yet, little is known involving gemcitabine resistance and remains largely to be elucidated.Materials and methodsWe evaluated the expression of Cx43 in gemcitabine-resistant cells and parental cells by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot analyses. Dual-luciferase reporter assay was applied to examine the epigenetic regulator of Cx43. The role of miR-218-5p-Cx43 axis on cell cytotoxicity, cell proliferation, colony formation, chemoresistance and migration was detected via mammalian expression vector and small short RNA (shRNA) transfection in vitro.ResultsIn this study, we found that Cx43 expression levels were significantly lower in gemcitabine-resistant cells than in the parental cells. On deep investigation of the epigenetic regulation of Cx43, a few miRNA candidates targeting Cx43 were derived. Through dual-luciferase reporter assay, Cx43 was proved to be a direct target of miR-218-5p. Besides, qPCR, Western blot demonstrated an inverse correlation between miR-218-5p and Cx43 expression in breast cancer cells, thus forming the miR-218-5p-Cx43 axis. Notably, miR-218-5p-Cx43 axis was found to be involved in the process of gemcitabine chemoresistance, cell proliferation and migration in breast cancer cells.ConclusionOur findings suggested that miR-218-5p-Cx43 axis was versatile and indicated significant potency in breast cancer cells. More importantly, miR-218-5p-Cx43 axis might be valuable in translational medicine, with therapeutic and prognostic information.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call