Abstract

Pyroptosis is a novel regulated cell death (RCD) mode associated with inflammation and innate immunity. Gasdermin E (GSDME), a crucial component of the gasdermin (GSDM) family proteins, has the ability to convert caspase-3-mediated apoptosis to pyroptosis of cancer cells and activate anti-tumor immunity. Accumulating evidence indicates that GSDME methylation holds tremendous potential as a biomarker for early detection, diagnosis, prognosis, and treatment of tumors. In fact, GSDME-mediated pyroptosis performs a dual role in anti-tumor therapy. On the one side, pyroptotic cell death in tumors caused by GSDME contributes to inflammatory cytokines release, which transform the tumor immune microenvironment (TIME) from a ‘cold’ to a ‘hot’ state and significantly improve anti-tumor immunotherapy. However, due to GSDME is expressed in nearly all body tissues and immune cells, it can exacerbate chemotherapy toxicity and partially block immune response. How to achieve a balance between the two sides is a crucial research topic. Meanwhile, the potential functions of GSDME-mediated pyroptosis in anti-programmed cell death protein 1 (PD-1) therapy, antibody-drug conjugates (ADCs) therapy, and chimeric antigen receptor T cells (CAR-T cells) therapy have not yet been fully understood, and how to improve clinical outcomes persists obscure. In this review, we systematically summarize the latest research regarding the molecular mechanisms of pyroptosis and discuss the role of GSDME-mediated pyroptosis in anti-tumor immunity and its potential applications in cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.