Abstract
Although relatively neglected previously, research efforts in the past decade or so have identified a pivotal role for glial cells in regulating neuronal function. Particular emphasis has been placed on increasing our understanding of the function of microglia because a change from the ramified "resting" state of these cells has been associated with the pathogenesis of several neurodegenerative diseases, notably Alzheimer's disease. However, it is not clear whether activation of microglia and the associated inflammatory changes play a part in triggering disease processes or whether cell activation is a response to the early changes associated with the disease. In either case, the possibility exists that modulation of microglial activation may be beneficial in some circumstances, underlying the need to pursue research in this area. The original morphological categorization of microglia by Del Rio Hortega into ameboid, ramified, and intermediate forms, must now be elaborated to encompass a functional description. The evidence which has been generated recently suggests that microglia are probably never in a "resting" state and that several intermediate transitional states, based on function and morphology, probably exist. A more complete understanding of these states and the triggers which lead to a change from one to another state, and the factors which modulate the molecular switch that determines the persistence of the "activated" state remain to be identified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.