Abstract

The cells of Clostridium stercorarium F-9 grown on cellobiose bound to insoluble cellulose allomorphs such as phosphoric acid-swollen cellulose (ASC). Treatment of the cells with 3 M guanidine hydrochloride extracted surface-layer proteins from the cells and abolished the affinity of the cells for ASC. SDS-polyacrylamide gel electrophoresis, zymogram, and immunological analyses indicated that one of the major surface layer proteins was Xyn10B, which is a modular xylanase comprising two family 22 carbohydrate-binding modules (CBMs), a family 10 catalytic domain of glycosyl hydrolases, a family 9 CBM, and two S-layer homologous (SLH) domains. The C. stercorarium F-9 cells treated with guanidine hydrochloride coprecipitated with ASC upon the addition of a derivative of Xyn10B containing both a CBM and SLH domain in addition to a catalytic domain, but not a derivative without Xyn10B-SLH domains, suggesting that Xyn10B functioned as a cellulose-binding protein in C. stercorarium F-9.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.