Abstract
The damped nonlinear wave equation, also known as the nonlinear telegraph equation, is studied within the framework of semigroups and eigenfunction approximation. The linear semigroup assumes a central role: it is bounded on the domain of its generator for all time This permits eigenfunction approximation within the semigroup framework, as a tool for the study of weak solutions. The semigroup convolution formula, known to be rigorous on the generator domain, is extended to the interpretation of weak solution on an arbitrary time interval. A separate approximation theory can be developed by using the invariance of the semigroup on eigenspaces of the Laplacian as the system evolves. For (locally) bounded continuous L 2 forcing, there is a natural derivation of a maximal solution, which can logically include a constraint on the solution as well. Operator forcing allows for the incorporation of concurrent physical processes. A significant feature of the proof in the nonlinear case is verification of successive approximation without standard fixed point analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.