Abstract

Researches on efficient energy supply in new buildings are significant for implementation of energy performance targets for buildings, aiming to increase energy efficiency as well as the share of renewable energy in the total balance of consumed energy and to reduce greenhouse gas emissions to the environment. Many studies suggest integrated assessment methods that combine building energy simulation and optimization methods. However, optimal solutions for case studies are based only on quantitative criteria (energy technical, environmental and economic). Therefore, such an approach is not sufficient to achieve the optimal building energy supply system in respect of the quantitative and qualitative criteria. The presented multicriteria assessment model for an energy supply system of a low energy house allows determining the optimal combination of technologies for a building energy supply system (BESS). Six variants of building constructions and fifteen combinations of BESS for each variant were analysed. Energy efficiency, environmental impact, economic rationality, comfort and system functionality were considered key criteria for optimal decision making. The results showed that the optimal solution for low energy and passive houses in Lithuania and other cold climate countries is the building envelope that corresponds to characteristics of energy efficiency class A+ and the BESS combination, consisting of a wood boiler and electricity from the national electricity grid. Mažaenergio pastato efektyvaus aprūpinimo energija tyrimai yra svarbūs įgyvendinant pastatų energinio naudingumo tikslus, siekiant padidinti energijos vartojimo efektyvumą ir atsinaujinančiųjų išteklių energijos dalį bendrajame suvartojamos energijos balanse, taip pat sumažinti šiltnamio efektą sukeliančių dujų emisijas. Atliekant tyrimus taikomi integruoto vertinimo metodai, siejantys pastato energinį modeliavimą ir optimizavimą, nustatantys racionalius sprendinius tik pagal kiekybinius kriterijus (energinius, techninius, ekologinius ir ekonominius). Tokio požiūrio nepakanka siekiant įdiegti racionalią pastato aprūpinimo energija sistemą kiekybinių ir kokybinių kriterijų atžvilgiu. Straipsnyje pateikiamas mažaenergio pastato aprūpinimo energija daugiatikslio vertinimo modelis, kuriuo remiantis iš pasirinktų šešių pastato konstrukcijų variantų ir jiems numatytų 15 PAES technologijų derinių nustatytas racionalus PAES technologijų derinys, vertinimo kriterijais imant energinį efektyvumą, poveikį aplinkai, ekonominį racionalumą, sukuriamą komfortą ir sistemos funkcionalumą. Tyrimo rezultatai parodė, kad, Lietuvoje ir panašaus klimato šalyse įgyvendinant mažaenergiams ir pasyviems vienbučiams namams keliamus reikalavimus, racionalus sprendinys yra pastato atitvaros, atitinkančios A+ energinio naudingumo klasės reikalavimus, su PAES deriniu, kurį sudaro biologinio kuro (malkų) katilas ir iš nacionalinių elektros tinklų tiekiama elektros energija.

Highlights

  • Over the past decade, the European Union (EU) has been facing unprecedented energy challenges resulting from increased import dependency, concerns over supplies of fossil fuels worldwide and a clearly discernible climate change

  • The results showed that the optimal solution for low energy and passive houses in Lithuania and other cold climate countries is the building envelope that corresponds to characteristics of energy efficiency class A+ and the building energy supply system (BESS) combination, consisting of a wood boiler and electricity from the national electricity grid

  • WASPAS method calculations were carried out using equations (1), (2), (3), (4), (5), which can be described as follow:

Read more

Summary

Introduction

The European Union (EU) has been facing unprecedented energy challenges resulting from increased import dependency, concerns over supplies of fossil fuels worldwide and a clearly discernible climate change. Because of its large share of total consumption, the largest cost-effective savings potential lies in the residential (household) sector and commercial buildings (tertiary) sector, where the full potential is estimated to be around 27% and 30% of energy use, respectively (Commission of the European Communities 2011). EU residential buildings have the greatest impact on the environment and contribute to about 77% (725 Mt/year) of carbon dioxide (CO2) emissions, while non-residential buildings determine the remaining 23% of pollutants to the environment. Single-family houses make up the largest group of EU residential sector, which causes about 60% of total CO2 emissions (435 Mt/year) (Hamdy et al 2011). It is necessary to exploit the unrealised potential of energy savings in individual residential buildings by determining the cost-optimal levels of energy performance of build-

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call