Abstract
In this paper, the multi-symplectic Fourier pseudospectral (MSFP) method is generalized to solve two-dimensional Hamiltonian PDEs with periodic boundary conditions. Using the Fourier pseudospectral method in the space of the two-dimensional Hamiltonian PDE (2D-HPDE), the semi-discrete system obtained is proved to have semi-discrete multi-symplectic conservation laws and a global symplecticity conservation law. Then, the implicit midpoint rule is employed for time integration to obtain the MSFP method for the 2D-HPDE. The fully discrete multi-symplectic conservation laws are also obtained. In addition, the proposed method is applied to solve the Zakharov–Kuznetsov (ZK) equation and the Kadomtsev–Petviashvili (KP) equation. Numerical experiments on soliton solutions of the ZK equation and the KP equation show the high accuracy and effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.