Abstract

The protein-surfactant interaction studies have great importance in the range of the application like cosmetics, food, pharmaceutical, detergent industries, and many more. In this study, we have studies protein (rabbit serum albumin, RSA) and a cationic surfactant (cetyltrimethylammonium bromide, CTAB) interaction at different physiological conditions (viz., pH, ionic strength, surfactants concentrations, protein concentration, and many more). They form the protein surfactant complexes. The interchange of electrostatic and hydrophobic force monitors the change in complexes. The three different pHs (below (4.0), above (7.0) and at (4.7) the isoelectric point of RSA) of the medium indicate the three different charges on the protein while surfactant is positive in charge. Critical micelle concentration (CMC) plays a significant role in protein-surfactant interaction. CTAB unfolds the protein at its specific concentration range afterward again; it starts refolded. RSA interacted, with the addition of the CTAB is characterized by many spectroscopic methods like UV-visible, fluorescence, fluorescence time-resolved, circular dichroism, and topographical changes monitored by the AFM. In fluorescence spectra, the blue shift shows the unfolding of RSA. The molecular docking indicates the binding energy of 5.8kcalmol-1. The changes below and above the CMC is significant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call