Abstract

In this paper, we present a detailed analysis of a multi-server retrial queue with Bernoulli feedback, where the servers are subject to starting failures. Upon completion of a service, a customer would decide either to leave the system with probability p or to join the retrial orbit again for another service with complementary probability 1−p. We analyse this queueing system as a quasi-birth–death process. Specifically, the equilibrium condition of the system is given for the existence of the steady-state analysis. Applying the matrix-geometric method, the formulae for computing the rate matrix and stationary probabilities are obtained. We further develop the matrix-form expressions for various system performance measures. A cost model is constructed to determine the optimal number of servers, the optimal mean service rate and the optimal mean repair rate subject to the stability condition. Finally, we give a practical example to illustrate the potential applicability of this model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.