Abstract

One of the challenges in electrical grid expansion planning is how to expand the infrastructure while considering fundamental changes in demand and supply, in part due to “game-changing” consumers, such as electric vehicles (EVs), and optional distributed generation (DG) by consumers. This work proposes an optimization model that addresses the generation and transmission expansion of the grid, including the facilities' locations, upgrades, and the network's design decisions. In contrast to some other models, it is not static in time: the model considers time-dependent demand in short-term (hourly) and long-term (yearly) variations. The proposed optimization model considers energy loss, transmission substations upgrades, constraints such as demand, capacities, and more. The model minimizes the long-term costs of infrastructure investments and the operational costs of generation. The work is supplemented by numerical experiments of the model in simulated scenarios. Sensitivity analysis conducted on some of the model features, demonstrates the importance of including them in the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.