Abstract

Advancing methods for modeling combustion systems and optimizing their operations is beneficial to improve the combustion performance. This paper develops a deep data-driven framework for the optimization of combustion system operations. First, a deep belief network based method is developed to model both of the combustion efficiency and the NOx emission. Next, a multi-objective optimization model is developed by integrating the deep belief network based models, the considered operational constraints, and the control variable constraints. Two objectives, maximizing the combustion efficiency and minimizing the NOx emission, are considered in the optimization. Due to the nonlinearity and complexity of the optimization model, traditional exact solution methods are not applicable to solve it. A recently presented swarm intelligence method, the JAYA algorithm, is applied to obtain the optimal solutions of the developed optimization model. Advantages of using JAYA are proved by benchmarking against well-known computational intelligence methods. The feasibility and effectiveness of the developed framework for optimizing the combustion process using industrial data is validated by computational experiments. Results demonstrate the potential of further improving both of the combustion efficiency and NOx emission by optimizing control settings of the combustion system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.