Abstract

We address a multi-item capacitated lot-sizing problem with setup times, safety stock and demand shortages. Demand cannot be backlogged, but can be totally or partially lost. Safety stock is an objective to reach rather than an industrial constraint to respect. The problem is np-hard. We propose a Lagrangian relaxation of the resource capacity constraints. We develop a dynamic programming algorithm to solve the induced sub-problems. An upper bound is also proposed using a Lagrangian heuristic with several smoothing algorithms. Some experimental results showing the effectiveness of the approach are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.