Abstract

The ternary strategy proves effective for breakthroughs in organic photovoltaics (OPVs). Elevating three photovoltaic parameters synergistically, especially the proportion-insensitive third component, is crucial for efficient ternary devices. This work introduces a molecular design strategy by comprehensively analyzing asymmetric end groups, side-chain engineering, and halogenation to explore the outstanding optoelectronic properties of the proportion-insensitive third component in efficient ternary systems. Three asymmetric non-fullerene acceptors (BTP-SA1, BTP-SA2, and BTP-SA3) are synthesized based on the Y6 framework and incorporated as the third component into the D18:Y6 binary system. BTP-SA3, featuring asymmetric terminal (difluoro-indone and dichloride-cyanoindone terminal), with branched alkyl side chains, exhibited high open-circuit voltage (VOC), balanced crystallinity and compatibility, achieving synergistic enhancements in VOC (0.862V), short circuit-current density (JSC, 27.52mA cm-2), fill fact (FF, 81.01%), and power convert efficiency (PCE, 19.19%). Device based on D18/Y6:BTP-SA3 (layer-by-layer processed) reached a high efficiency of 19.36%, demonstrating a high tolerance for BTP-SA3 (10-50%). This work provides novel insights into optimizing OPVs performances in multi-component systems and designing components with enhanced tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.