Abstract

The increase in the share of renewable energy in the power generation mix plays a pivotal role in the decarbonisation of power systems, thus facilitating the achievement of international and national targets for reducing greenhouse gas emissions and addressing climate change. Due to the intermittent nature of variable renewable energy, the integration of these sources in power systems requires investments in additional solutions and setting strategies to ensure grid stability and reliability. For that purpose, a prospective modelling was applied to the relatively isolated island named Procida, located in the gulf of Naples in Italy, through the bottom-up optimization model TIMES-Procida for a long-term energy plan where technical solutions, i.e., deployment of photovoltaics on rooftops and storage, and policy scenarios, i.e., energy efficiency, were used to analyse the evolution of the energy system. The introduction of renewable energy could be much more relevant when dealing with islands; they appear as decisive territories for experimentation and analysis of the transformation of all power systems. At year 2050, our results address decarbonisation and energy autonomy. They show that only with high shares of renewable energy will the territory see a noticeable decarbonisation of its economic sectors (up to 24%) and a decreasing dependency on imports (−16.6% compared to low renewable integration). By comparing the results of scenarios including or lacking storage solutions, we showcased how this reflected on the investments in PV and on grid congestion relief.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call