Abstract

This paper presents a study of the stress softening effect encountered in uniaxial extension and explores its effect on the small amplitude transverse vibration of a stretched rubber cord. An idealization of the uniaxial stressstrain behavior of a stress softening material is presented, the importance of the deformation history is emphasized, and parameters are introduced to track the deformation history. An extended investigation of a model proposed by Mullins and Tobin to quantify stress softening by introduction of a strain amplification factor is then presented. A major result derived from this model is shown to be consistent with results reported by others. The uniaxial stress softening theory is used to describe the transverse vibration behavior of a rubber string subjected to repeated stretching. This appears to be the first application of the softening model of Mullins and Tobin to a dynamical problem. Analytical results are compared with uniaxial stress-strain and transverse vibration experiments performed with buna-n, neoprene, and silicone rubber cords. Both types of experiments provide a simple and novel method to evaluate the predictive success of our uniaxial theory without the need for a specific constitutive model. The pseudoelastic response found in biological tissues is discussed in light of results obtained in the transverse vibration experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.