Abstract
Methanogenesis from dimethylsulfide requires the intermediate methylation of coenzyme M. This reaction is catalyzed by a methylthiol:coenzyme M methyltransferase composed of two polypeptides, MtsA (a methylcobalamin:coenzyme M methyltransferase) and MtsB (homologous to a class of corrinoid proteins involved in methanogenesis). Recombinant MtsA was purified and found to be a homodimer that bound one zinc atom per polypeptide, but no corrinoid cofactor. MtsA is an active methylcobalamin:coenzyme M methyltransferase, but also methylates cob(I)alamin with dimethylsulfide, yielding equimolar methylcobalamin and methanethiol in an endergonic reaction with a K(eq) of 5 x 10(-)(4). MtsA and cob(I)alamin mediate dimethylsulfide:coenzyme M methyl transfer in the complete absence of MtsB. Dimethylsulfide inhibited methylcobalamin:coenzyme methyl transfer by MtsA. Inhibition by dimethylsulfide was mixed with respect to methylcobalamin, but competitive with coenzyme M. MtbA, a MtsA homolog participating in coenzyme M methylation with methylamines, was not inhibited by dimethylsulfide and did not catalyze detectable dimethylsulfide:cob(I)alamin methyl transfer. These results are most consistent with a model for the native methylthiol:coenzyme M methyltransferase in which MtsA mediates the methylation of corrinoid bound to MtsB with dimethylsulfide and subsequently demethylates MtsB-bound corrinoid with coenzyme M, possibly employing elements of the same methyltransferase active site for both reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.