Abstract

Methylenetetrahydrofolate dehydrogenase)methenyltetrahydrofolate cyclohydrolase)formyltetrahydrofolate synthetase (MTHFD1) is a trifunctional enzyme that interconverts tetrahydrofolate (THF) derivatives for nucleotide synthesis. A common variant in MTHFD1, p.Arg653Gln (c.1958G>A), may increase the risk for neural tube defects (NTD). To examine the biological impact of this variant on MTHFD1 function, we measured enzyme activity and stability in vitro and assessed substrate flux in transfected mammalian cells. The purified Arg653Gln enzyme has normal substrate affinity but a 36% reduction in half)life at 42 degrees C. Thermolability is reduced by magnesium adenosine triphosphate and eliminated by the substrate analog folate pentaglutamate, suggesting that folate status may modulate impact of the variant. The mutation reduces the metabolic activity of MTHFD1 within cells: formate incorporation into DNA in murine Mthfd1 knockout cells transfected with Arg653Gln is reduced by 26%+/-7.7% (P<0.05), compared to cells transfected with wild)type protein, indicating a disruption of de novo purine synthesis. We assessed the impact of the variant on risk for congenital heart defects (CHD) in a cohort of Quebec children (158 cases, 110 controls) and mothers of children with heart defects (199 cases, 105 controls). The 653QQ genotype in children is associated with increased risk for heart defects (odds ratio [OR], 2.11; 95% confidence interval [CI], 1.01-4.42), particularly Tetralogy of Fallot (OR, 3.60; 95% CI, 1.38-9.42) and aortic stenosis (OR, 3.13; 95% CI, 1.13-8.66). There was no effect of maternal genotype. Our results indicate that the Arg653Gln polymorphism decreases enzyme stability and increases risk for CHD. Further evaluation of this polymorphism in folate)related disorders and its potential interaction with folate status is warranted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.