Abstract

AbstractConsider an n-point metric space M = (V,δ), and a transmission range assignment r: V → ℝ + that maps each point v ∈ V to the disk of radius r(v) around it. The symmetric disk graph (henceforth, SDG) that corresponds to M and r is the undirected graph over V whose edge set includes an edge (u,v) if both r(u) and r(v) are no smaller than δ(u,v). SDGs are often used to model wireless communication networks.Abu-Affash, Aschner, Carmi and Katz (SWAT 2010, [1]) showed that for any n-point 2-dimensional Euclidean space M, the weight of the MST of every connected SDG for M is O(logn) ·w(MST(M)), and that this bound is tight. However, the upper bound proof of [1] relies heavily on basic geometric properties of constant-dimensional Euclidean spaces, and does not extend to Euclidean spaces of super-constant dimension. A natural question that arises is whether this surprising upper bound of [1] can be generalized for wider families of metric spaces, such as high-dimensional Euclidean spaces.In this paper we generalize the upper bound of Abu-Affash et al. [1] for Euclidean spaces of any dimension. Furthermore, our upper bound extends to arbitrary metric spaces and, in particular, it applies to any of the normed spaces ℓ p . Specifically, we demonstrate that for any n-point metric space M, the weight of the MST of every connected SDG for M is O(logn) ·w(MST(M)).KeywordsSpan TreeTransmission RangeMinimum Span TreeHamiltonian PathUnit Disk GraphThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.