Abstract

Dehydrins and aquaporins play crucial roles in plant growth and stress responses by acting as protector and controlling water transport across membranes, respectively. MsDHN1 (dehydrin) and MsPIP2;1 (aquaporin) were demonstrated to interact with a membrane-anchored MYB protein, MsmMYB (as mMYB) in plasma membrane under normal condition. MsDHN1, MsPIP2;1 and MsDHN1-MsPIP2;1 positively regulated alfalfa tolerance to water deficiency. Water deficiency caused phosphorylation of MsPIP2;1 at Ser 272, which led to release C terminus of mMYB (mMYBΔ83) from plasma membrane and translocate to nucleus, where C terminus of MsDHN1 interacted with mMYBΔ83, and promoted mMYBΔ83 transcriptional activity in response to water deficiency. Overexpression of mMYB and mMYBΔ83 down-regulated the expression of MsCESA3, but up-regulated MsCESA7 expression by directly binding to their promoters, and resulted in high drought tolerance in transgenic hairy roots. These results indicate that the MsDHN1-MsPIP2;1-MsMYB module serves as a key regulator in alfalfa against drought stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call