Abstract

Most large ribozymes require protein cofactors in order to function efficiently. The yeast mitochondrial bI3 group I intron requires two proteins for efficient splicing, Mrs1 and the bI3 maturase. Mrs1 has evolved from DNA junction resolvases to function as an RNA cofactor for at least two group I introns; however, the RNA binding site and the mechanism by which Mrs1 facilitates splicing were unknown. Here we use high-throughput RNA structure analysis to show that Mrs1 binds a ubiquitous RNA tertiary structure motif, the GNRA tetraloop-receptor interaction, at two sites in the bI3 RNA. Mrs1 also interacts at similar tetraloop-receptor elements, as well as other structures, in the self-folding Azoarcus group I intron and in the RNase P enzyme. Thus, Mrs1 recognizes general features found in the tetraloop-receptor motif. Identification of the two Mrs1 binding sites now makes it possible to create a model of the complete six-component bI3 ribonucleoprotein. All protein cofactors bind at the periphery of the RNA such that every long-range RNA tertiary interaction is stabilized by protein binding, involving either Mrs1 or the bI3 maturase. This work emphasizes the strong evolutionary pressure to bolster RNA tertiary structure with RNA-binding interactions as seen in the ribosome, spliceosome, and other large RNA machines.

Highlights

  • RNA and proteins have co-evolved to form the ribonucleoproteins (RNPs) that carry out many of the fundamental steps of gene regulation, including mRNA processing and protein biogenesis [1]

  • We show that Mrs1 interacts at tetraloop-receptor elements in the Azoarcus group I intron and the Bacillus subtilis ribonuclease P (RNase P) specificity domain RNA and at other sites in these non-cognate RNAs

  • Mrs1 binding is required for splicing of a second group I intron, the aI5b intron from the COX1 pre-mRNA in yeast mitochondria [21]

Read more

Summary

Introduction

RNA and proteins have co-evolved to form the ribonucleoproteins (RNPs) that carry out many of the fundamental steps of gene regulation, including mRNA processing and protein biogenesis [1]. Group I introns, represent ideal models for testing the role of protein recruitment into ribonucleoprotein complexes. The group I intron active site is composed of RNA. The catalytic core is formed at the interface of three RNA domains, termed the P1-P2, the P5-P4-P6, and the P9-P7-P3-P8 domains These domains are held in a precise and catalytically active threedimensional architecture by inter-domain tertiary interactions [2,3,4,5]. Group I introns have evolved large peripheral RNA elements and have recruited a wide range of protein cofactors to stabilize their active conformations [2,6,7,8,9,10]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.