Abstract

BackgroundGinseng is a popular traditional herbal medicine in north-eastern Asia. It has been used for human health for over thousands of years. With the rise in global temperature, the production of Korean ginseng (Panax ginseng C.A.Meyer) in Korea have migrated from mid to northern parts of the Korean peninsula to escape from the various higher temperature related stresses. Under the high ambient temperature, vegetative growth was accelerated, which resulted in early flowering. This precocious phase change led to yield loss. Despite of its importance as a traditional medicine, biological mechanisms of ginseng has not been well studied and even the genome sequence of ginseng is yet to be determined due to its complex genome structure. Thus, it is challenging to investigate the molecular biology mechanisms at the transcript level.ResultsTo investigate how ginseng responds to the high ambient temperature environment, we performed high throughput RNA sequencing and implemented a bioinformatics pipeline for the integrated analysis of small-RNA and mRNA-seq data without a reference genome. By performing reverse transcriptase (RT) PCR and sanger sequencing of transcripts that were assembled using our pipeline, we validated that their sequences were expressed in our samples. Furthermore, to investigate the interaction between genes and non-coding small RNAs and their regulation status under the high ambient temperature, we identified potential gene regulatory miRNAs. As a result, 100,672 contigs with significant expression level were identified and 6 known, 214 conserved and 60 potential novel miRNAs were predicted to be expressed under the high ambient temperature.ConclusionCollectively, we have found that development, flowering and temperature responsive genes were induced under high ambient temperature, whereas photosynthesis related genes were repressed. Functional miRNAs were down-regulated under the high ambient temperature. Among them are miR156 and miR396 that target flowering (SPL6/9) and growth regulating genes (GRF) respectively.

Highlights

  • Ginseng is a popular traditional herbal medicine in north-eastern Asia

  • Major locations of Korean ginseng (Panax ginseng C.A.Meyer) production in Korea have migrated from mid to northern parts of the Korean peninsula to escape from the various higher temperature related stresses

  • This study provides the analysis of mRNA and miRNA transcriptomic landscape of the Korean ginseng when treated with high ambient temperature

Read more

Summary

Introduction

Ginseng is a popular traditional herbal medicine in north-eastern Asia It has been used for human health for over thousands of years. With the rise in global temperature, the production of Korean ginseng (Panax ginseng C.A.Meyer) in Korea have migrated from mid to northern parts of the Korean peninsula to escape from the various higher temperature related stresses. Ginseng is a well-known traditional herbal medicine in north-eastern Asia and it has been used for human health for over thousands of years. Major locations of Korean ginseng (Panax ginseng C.A.Meyer) production in Korea have migrated from mid to northern parts of the Korean peninsula to escape from the various higher temperature related stresses. Perennial plants may memorize some environmental stresses as a irreversible manner, which can transmit to the following years so that some tolerances against the stress that they have been exposed to could be acquired

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call