Abstract

The diffractive deep neural network (D2NN) can efficiently accomplish 2D object recognition based on rapid optical manipulation. Moreover, the multiple-view D2NN array (MDA) possesses the obvious advantage of being able to effectively achieve 3D object classification. At present, 3D target recognition should be performed in a high-speed and dynamic way. It should be invariant to the typical shifting, scaling, and rotating variance of targets in relatively complicated circumstances, which remains a shortcoming of optical neural network architectures. In order to efficiently recognize 3D targets based on the developed D2NN, a more robust MDA (mr-MDA) is proposed in this paper. Through utilizing a new training strategy to tackle several random disturbances introduced into the optical neural network system, a trained mr-MDA model constructed by us was numerically verified, demonstrating that the training strategy is able to dynamically recognize 3D objects in a relatively stable way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.