Abstract

Animal models have been extensively used to test promising new agents for the treatment and prevention of cancer. Many different animal models are available for preclinical testing, and the choice of the specific model to use is often a critical step in successful drug development. Many different mouse models of human breast cancer have been developed that have been used to test promising anti-cancer drugs. These include mouse models that spontaneously develop mammary tumors, carcinogen-treated mouse models, xenograft models, transgenic mice and gene knockout mice that develop mammary tumors. The particular strengths and weakness of these models for testing therapeutic agents will be reviewed. The most widely used preclinical models for testing agents for the treatment of cancer are xenograft models. Xenograft studies using human cancer cell lines are easily conducted, are relatively rapid and, importantly, are recognized by the Food and Drug Administration as providing evidence of preclinical anti-tumor activity against human cancer. However, certain studies cannot be done using xenografts of human cancer cell lines. These include testing of immune-based therapies or testing of cancer preventive agents. For such studies, other models are needed. Testing of novel vaccines against cancer requires an immunocompetent host, and thus may require vaccination against murine tumors or studies to be done in 'humanized' mice. Studies of cancer preventive agents requires xenografts of human normal breast tissue or carcinoma-in-situ lesions, or alternatively mouse or rat models that develop tumors, either spontaneously or after carcinogen treatment. One of the most commonly used models for testing chemopreventive agents has been the carcinogen-treated rat model. This model has been successfully used to demonstrate the chemopreventive activity of many agents, including selective estrogen receptor modulators (SERMs) such as tamoxifen, raloxifene, and idoxifene, and retinoid compounds, and is particularly useful for testing agents for the prevention or treatment of estrogen receptor-positive mammary cancer. More recently, transgenic mouse models have been used to study the activity of chemopreventive agents, particularly for the prevention of estrogen receptor-negative breast cancer. We have used two such transgenic mice (C3(1)-SV40 T antigen, and mouse mammary tumor virus [MMTV]-erbB2 mice) to investigate the preventive activity of receptor-selective retinoid compounds. Both of these transgenic mouse lines develop premalignant lesions that then evolve into invasive mammary tumors that eventually metastasize. We have found that 9-cis-retinoic acid, which binds both retinoic acid receptors and retinoid X receptors (RXRs), and the RXR-selective retinoid, LGD1069 (bexarotene, Targretin), suppresses the development of non-invasive and invasive mammary tumors in both C3(1) SV40 T antigen mice and MMTV-erbB2 mice. These retinoids interfere with tumorigenesis by suppressing proliferation of normal and premalignant mammary epithelial cells, ultimately suppressing the development of invasive cancer. Based on these results in these mouse models, we initiated a human clinical trial using retinoids for the prevention of human breast cancer, which is now ongoing. These results demonstrate the utility of genetically engineered mouse models for the testing of molecularly targeted agents for the prevention of breast cancer.

Highlights

  • The remarkable generation of scores of increasingly sophisticated mouse models of mammary cancer over the past two decades has provided tremendous insights into molecular derangements that can lead to cancer

  • We report that somatic mutations of p53 in mouse mammary epithelial cells lead to ERα-positive and ERαnegative tumors. p53 inactivation in pre-pubertal/pubertal mice, but not in adult mice, leads to the development of ERα-positive tumors, suggesting that developmental stages influence the availability of ERα-positive tumor origin cells

  • Genetic alterations commonly observed in human breast cancer including c-myc amplification and Her2/Neu/erbB2 activation were seen in these mouse tumors

Read more

Summary

Mouse models of human breast cancer: evolution or convolution?

Transgenic Oncogenesis Group, Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, Maryland, USA. The remarkable generation of scores of increasingly sophisticated mouse models of mammary cancer over the past two decades has provided tremendous insights into molecular derangements that can lead to cancer. The relationships of these models to human breast cancer, remain problematic. P53 inactivation in pre-pubertal/pubertal mice, but not in adult mice, leads to the development of ERα-positive tumors, suggesting that developmental stages influence the availability of ERα-positive tumor origin cells. These tumors have a high rate of metastasis that is independent of tumor latency. Since it is feasible to isolate ERα-positive epithelial cells from normal mammary glands and tumors, molecular mechanisms underlying ERα-positive and ERα-negative mammary carcinogenesis can be systematically addressed using this model

Mouse models for BRCA1-associated breast cancer
Genetic manipulation of the mammary gland by transplantation
The Mutant Mouse Regional Resource Center Program
11 Mammary pathology of the genetically engineered mouse
D Dugger
15 Role of animal models in oncology drug discovery
18 Clinical breast cancer and estrogen
19 Pregnancy levels of estrogen prevents breast cancer
21 The ErbB receptor tyrosine kinases and their roles in cancer
22 Predicting breast cancer behavior by microarray analysis
24 The comparative genetics and genomics of cancer: of mice and men
23 The molecular biology of mammary intraepithelial neoplasia outgrowths
28 Transgenic models are predictive: the herceptin and flavopiridol experience
31 Role of differentiation in carcinogenesis and cancer prevention
30 Genetically engineered mouse models of human breast cancer
34 Hormonal interactions during mammary gland development
35 Function of LEF1 in early mammary development
40 Imaging mouse models of breast cancer with positron emission tomography
42 Ultrasound imaging of tumor perfusion
D Medina
47 In situ to invasive carcinoma transition: escape or release
48 Regulation of human mammary stem cells
50 Stem cells in normal breast development and breast cancer
McKenzie
57 Genomic approaches to drug target discovery using mouse models
58 Target discovery in the postgenomic era
60 From gene expression patterns to antibody diagnostics
Findings
A Korman
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.