Abstract

Evidence is accumulating that members of the FGF gene family provide signals that act locally to regulate growth and patterning in vertebrate embryos. In this report, we provide a detailed analysis of the mouse Fgf8 gene. We have mapped the Fgf8 locus to the distal region of mouse chromosome 19, and sequenced the 5' coding region of the gene. Our data identify a new coding exon, and locate multiple splice donor and splice acceptor sites that can be used to produce at least seven transcripts encoding a family of secreted FGF8 proteins with different N termini. From these results, it appears that Fgf8 is structurally the most complex member of the FGF family described to date. In the embryo, many of the regions in which Fgf8 RNA is localized are known to direct outgrowth and patterning, including the apical ectodermal ridge of the limb bud, the primitive streak and tail bud, the surface ectoderm overlying the facial primorida and the midbrain-hindbrain junction, suggesting that FGF8 may be a component of the regulatory signals that emanate from these regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.