Abstract

All mammalian eggs are surrounded by a highly specialized extracellular matrix (ECM), called the zona pellucida (ZP), that functions before, during, and after fertilization. Unlike somatic cell ECM the mouse ZP is composed of three different proteins, ZP1-3, that are synthesized and secreted by growing oocytes and assembled into long interconnected fibrils. ECM or vitelline envelope (VE) that surrounds fish, reptilian, amphibian, and avian eggs also consists of a limited number of proteins all closely related to ZP1-3. Messenger RNAs encoding ZP1-3 are expressed only by growing oocytes at very high levels from single-copy genes present on different chromosomes. Processing at the amino- and carboxy-termini of nascent ZP1-3 permits secretion of mature proteins into the extracellular space and assembly into fibrils and matrix. Structural features of nascent ZP proteins prevent assembly within secretory vesicles of growing oocytes. Homozygous knockout female mice that fail to synthesize either ZP2 or ZP3 are unable to construct a ZP, ovulate few if any eggs, and are infertile. ZP1-3 have a common structural feature, the ZP domain (ZPD), that has been conserved through 600 million years of evolution and is essential for ZP protein assembly into fibrils. The ZPD consists of two subdomains, each with four conserved cysteine residues present as two intramolecular disulfides, and resembles an immunoglobulin (Ig) domain found in a wide variety of proteins that have diverse functions, from receptors to mechanical transducers. ZP2 and ZP3 function as receptors for acrosome-reacted and acrosome-intact sperm, respectively, during fertilization of ovulated eggs, but are inactivated as sperm receptors as a result of fertilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.