Abstract

Lower-limb amputation limits inherent motor abundance in the locomotor system and impairs walking mechanics. Able-bodied walkers vary ankle torque to adjust step-to-step leg force production as measured by resultant ground reaction forces. Simultaneously, knee torque covaries with ankle torque to act as a brake, resulting in consistent peak leg power output measured by external mechanical power generated on the center of mass. Our objective was to test how leg force control during gait is affected by joint torque variance structure in the amputated limb. Within the framework of the uncontrolled manifold analysis, we measured the Index of Motor Abundance (IMA) to quantify joint torque variance structure of amputated legs and its effect on leg force, where IMA > 0 indicates a stabilizing structure. We further evaluated the extent to which IMA in amputated legs used individual (INV) and coordinated (COV) joint control strategies. Amputated legs produced IMA and INV values similar to intact legs, indicating that torque deviations of the prosthetic ankle can modulate leg force at the end of stance phase. However, we observed much lower COV values in the amputated leg relative to intact legs indicating that biological knee joint torque of the amputated leg does not covary with prosthetic ankle torque. This observation suggests inter-joint coordination during gait is significantly limited as a result of transtibial amputation and may help explain the higher rate of falls and impaired balance recovery in this population, pointing to a greater need to focus on inter-joint coordination within the amputated limb.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call