Abstract

Relative motion between armature and rails in the railgun produces induced emf's. The Lorentz force formula correctly predicts the emf present in the armature but it fails to acknowledge the induction of further emf's in the rails which are proportional to the relative velocity. It is easy to confirm the existence of the additional rail emf's behind and ahead of the armature, by voltage measurements across the muzzle and the breech of the railgun. Neumann's forgotten law of induction, which was first proposed in 1845, correctly accounts for the magnitude and position of all motionally induced emf components in the railgun circuit. The velocity dependent back-emf's in the rails coincide with the Ampere recoil forces in the railheads just behind the armature. Electric power extended in overcoming these back-emf's, and associated with the recoil forces, seem to store elastic strain energy in the rails.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.