Abstract

We investigate the equations of motion of large snow avalanches, and in contrast with [1–3] we take into account the fact that the dry friction can reach a critical value above which the snow in the avalanche or the underlaying material cannot sustain the friction. We find asymptotic solutions for long times after the beginning of motion. These solutions describe the avalanche motion in which a part of the snow moves in the conditions of limiting friction over a tilted plane with a uniform layer of snow. The equations which are used to find these asymptotic solutions have the property that for certain depths the flow velocity of small perturbations decreases with increasing depth. This is related to a number of unusual features (from the hydraulic point of view) of the solutions. In particular, on relatively gentle slopes two zones are formed in the avalanche: the forward part, with a large velocity and thickness of the moving layer, and the rear part, which is significantly slower and thinner. The two parts are separated by a narrow region characterized by a sharp decline in velocity and thickness of the moving layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.