Abstract

The motion of micro-spheres in He II thermal counterflow has been measured using the Particle Image Velocimetry (PIV) technique. Although the tracer particles are able to track the motion of the normal fluid component, a significant discrepancy between the measured particle velocity and theoretical normal fluid velocity is observed. Further analysis of this velocity discrepancy suggests that it may be caused by the interaction between particles and vortex lines in the superfluid component. A semi-empirical correlation for the interaction force is developed and compared to the experimental results, from which new dynamic behavior of particles in He II is presented in the form of an effective kinematic viscosity of the superfluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.