Abstract

Analytical solution of the equations of motion of a spherical particle suspended in a turbulent flow near a plane wall has been obtained. The equations include the lift force and wall effects on the drag force. The solution shows that the particle turbulent motion is affected by the wall presence in the following manner: (a) The wall augments the response of the particle to fluid turbulence. The ratio between the particle rms velocity fluctuation near the wall and that of an identical particle in an unbounded flow is always greater than unity. This ratio increases by increasing the particle density and diameter and decreasing the particle distance from the wall. (b) Wall effects in a direction normal to it are more pronounced than those in the parallel direction. This is attributed mainly to the lift force acting in the normal direction. (c) Effects of the drag force on particle intensity are confined close to the wall whereas the lift effects extend to larger distances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.