Abstract

This article presents an exact solution of the equation of motion of a charged particle in the electromagnetic field of a high-intensity polarization-modulated wave. Expressions for the average kinetic energy of a particle without regard to its rest energy in the case of circular and linear polarization of a modulated wave are obtained. The motion of a charged particle in the field was analyzed and expressed in terms of dependences of its average kinetic energy on the electromagnetic wave intensity and on various types of modulation depths. The contribution of each type of modulation to the energy characteristics of a charged particle was demonstrated. Solving the equation of motion of a charged particle in the electromagnetic field of a plane wave opens up possibilities for various applications related, in particular, to various developments of multi-frequency lasers and laser modulation technology. This study was proposed due to the growing interest in experiments using high-intensity femtosecond laser radiation and high-temperature plasma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call