Abstract

The usual Chern-Simons extension of Einstein gravity theory consists in adding a squared Riemann contribution to the Hilbert Lagrangian, which means that a square-curvature term is added to the linear-curvature leading term governing the dynamics of the gravitational field. However, in such a way the Lagrangian consists of two terms with a different number of curvatures, and therefore not homogeneous. To develop a homogeneous Chern-Simons correction to Einstein gravity we may, on the one hand, use the above-mentioned square-curvature contribution as the correction for the most general square-curvature Lagrangian, or on the other hand, find some linear-curvature correction to the Hilbert Lagrangian. In the first case, we will present the most general square-curvature leading term, which is in fact the already-known re-normalizable Stelle Lagrangian. In the second case, the topological current has to be an axial-vector built only in terms of gravitational degrees of freedom and with a unitary mass dimension, and we will display such an object. The comparison of the two theories will eventually be commented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call